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Abstract— Aggressive CMOS scaling accelerates transistor and
interconnect wearout, resulting in shorter and less predictable
lifetimes for microprocessors. Studies show that wearout faults
have a gradual onset, manifesting initially as timing faults before
eventually leading to hard breakdown. Prior work suggests
detecting wearout faults as they begin to affect normal oper-
ation, but these techniques require complex circuit and/ormi-
croarchitectural changes. Our proposal, FIRST (Fingerprints In
Reliability and Self Test), uses existing design-for-testhardware
(scanout chains) and infrequent periodic tests under reduced
frequency guardbands to observe marginal behavior that is an
indication of wearout. FIRST is a low-overhead, complexity-
effective methodology for detecting emerging wearout faults
before they affect normal operation. We discuss the operation
of FIRST error detection, present a model for wearout fault
simulation, and demonstrate FIRST’s effectiveness on a portion
of a commercial microprocessor design.

I. I NTRODUCTION

As CMOS feature sizes continue to shrink, transistor and
interconnect reliability worsens [1]. While numerous physi-
cal phenomena will account for future device failures, the
common system-level impact is shorter and less predictable
lifetimes for microprocessors [2].

Unlike traditional manufacturing defect and single-event
upset fault models (e.g., stuck-at faults and transient bit
flip, respectively), studies suggest wearout-related faults will
appear with gradual onset and will first affect timing. Design-
ers conservatively add timing slack—known as a frequency
guardband—to ensure that logic meets latch setup times. As
devices transition more slowly over their lifetime, combina-
tional logic paths will eventually fail to meet timing require-
ments and encroach on the design’s frequency guardband [3].
Initially faults will appear intermittent, depending on specific
operating conditions (e.g., voltage, temperature, circuit inputs,
etc.), but eventually result in permanent defects. The number
of potential critical paths in complex designs—due to rising
static variations [4]—make it difficult to predict which paths
will fail first due to wearout.

Recent work advocates detecting and recovering from
wearout faults as they occur during normal operation. We
refer to such techniques asjust-in-time fault detection. Prior
proposals [5,6] integrate carefully designed fault detection
mechanisms into existing designs, but face significant chal-
lenges from the increasing number of (unpredictable) crit-
ical paths [5] or require complex integration with existing
resource scheduling mechanisms [6]. Bower et al. [7] avoid

the challenges of circuit-level test, but require extensive design
changes to support instruction-level checking.

In this paper, we proposeearly fault detectionwith FIRST:
Fingerprinting in Reliability and Self Test. In FIRST, we
propose infrequent, periodic (e.g., once daily) testing where
application and system software are suspended from the core,
and special test software runs to stress the microarchitecture
and detect the onset of wearout. FIRST reduces the processor’s
effective frequency guardband while running test programs.
By reducing the frequency guardband, marginal critical paths
are exposed well before timing faults affect normal operation
on those paths. Lightweight signatures of microarchitectural
state, called microarchitectural fingerprints [8], provide detec-
tion using existing test hardware, without requiring advance
knowledge of which devices will fail.

Our paper is organized as follows. We provide background
on wearout faults in Section II. Section III introduces the
FIRST concept and implementation. Section IV presents a
simulation model for wearout faults. We evaluate the simula-
tion model and FIRST methodology in Section V. We present
related work in Section VI and conclude.

II. BACKGROUND

Sources of wearout include gate oxide breakdown, hot-
carrier injection, negative-bias temperature instability (NBTI),
and electromigration [1]. The onset and end stages of device
wearout (soft breakdown and hard breakdown, respectively)
have been studied extensively in device reliability literature
using accelerated wearout testing techniques.

During gate oxide soft breakdown, transistor switching
speed decreases for a given operating voltage [3]. The logical
operation of the transistor is nevertheless maintained [9]. This
behavior means logic gate outputs transition more slowly
as the soft breakdown progresses. Similar results have been
shown for NBTI [10].

In light of this behavior, wearout appears as slow rising
or falling transitions for certain inputs on the affected de-
vices [11]. For example, a NAND gate with a failing NMOS
transistor would experience a slowdown for the falling output,
whereas a failing PMOS transistor would slow the rising
output transition.

While today’s designs have multiple statically known crit-
ical paths, increasing within-die variation associated with
process scaling means that a particular die’s critical paths
are not necessarily known at design time [12]. Furthermore,



� � � � � � � � � � � � � � � �� � 	 
 �� � � 
 � ��

 � 
 �� � � 
 � ���
 � � � � 	 
 � � � � � � � �
� � � 	 � ��� � � � �� � �� �� � � � � � � � � � � �� � � � � 
 �� � � � � �
� � � � � � � �! "#$ % ! "� $� � � � � 
 �� � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � ��
� � � � � �� � & � � � � � � � � � ' �
( #$ ) " #� ) �! "#$ % ! "� $ * � + �	 � � � � ' � � � � �, �� - �� ' 		 � � � � ' � � � � �

, �� � � �� ��� . �� / / // / /
Fig. 1. A scanout cell records data or control-path signals on DataIn and hashes the monitored value with the output of previous cells in the chain.

experiments show that switching speed decreases dramatically
during soft breakdown [10], which means that new critical
paths may form. Therefore, predicting the location of wearout
faults is difficult and detection mechanisms must look broadly
across the design to detect the timing changes.

Although device wearout is gradual and precise failures are
unpredictable, the failure rate has been shown to fit time-
dependent distributions (e.g., log-normal and Weibull [3,13]).
Furthermore, once a device has begun the failure process,
research shows that the continued degradation rate is depen-
dent upon operating conditions (e.g., exponentially related to
supply voltage) [14]. With typical operating conditions, the
soft breakdown occurs over days or weeks. Thus, there is
opportunity for early detection of the first devices that begin
soft breakdown.

III. FIRST

Based on the observation that common wearout faults
exhibit a gradual onset, we propose the FIRST (Fingerprinting
In Reliability and Self Test) methodology for early detection
of wearout faults. The idea behind FIRST is to periodically
test the processor core in near-marginal conditions to expose
changes in timing that initially hide inside the processor’s
frequency guardband.

Effective early wearout detection demands (1) extensive
coverage of circuit nodes to detect the first marginal devices
and (2) mechanisms to induce marginal operation in the
processor core.

The FIRST methodology performs in-field wearout fault
detection in microprocessor cores. To start a test period, the
operating system temporarily takes the core offline and places
it in FIRST mode. The core then loads functional test programs
that exercise logic transitions within control logic and datap-
aths. While the programs execute, the core generates a high-
observability at-speed signature of internal microarchitectural
state. The core repeats the same programs and signature
collection as operating conditions are gradually changed (e.g.,
lowering supply voltage or increasing clock frequency), which
effectively reduces the frequency guardband.

When the recorded signature no longer matches those of
earlier executions, the frequency guardband has been exceeded
and the test period ends. A signature mismatch at progressively
more conservative operating conditions over subsequent test
periods (e.g., over several days) indicates the onset of wearout.
The appearance of a small number of errors presages extensive
future failures and hard breakdown. The early warning allows
time for scheduled replacement or removal of the failing
processor.

A. Fault detection mechanism

Fault detection in FIRST is done by monitoring the cycle-
by-cycle operation of the processor core using lightweight
signatures of circuit node values. To generate the signatures
in FIRST, we propose leveraging existing built-in processor
test hardware for generatingmicroarchitectural fingerprintsof
the processor’s execution. A microarchitectural fingerprint is
a small hash of internal state updates done by the processor
over time (e.g., values stored in pipeline data and control
registers). Fingerprints of a fixed functional test’s execution
can be compared across test periods and operational conditions
to detect internal changes in the behavior of the processor that
have not yet appeared in normal operation.

Microarchitectural fingerprints leverage existing manufac-
turing test and debug hardware calledscanout chainsto hash
internal state over the course of execution [15]. Scanout chains
are non-destructive sequential cells added to combinational
and sequential nodes inside the processor core primarily to
detect manufacturing defects and aid in at-speed silicon debug-
ging. The logic cell illustrated in Figure 1 provides asignature
modethat continually shifts state down the chain and XOR’s it
with the current value in the device. The output of the scanout
chain can be fed into compactors such as linear feedback shift
registers (LFSR) to create a summary of execution over space
and time.

Because microarchitectural fingerprints monitor a large frac-
tion of the internal state of the processor at full operating
frequencies, they are useful for detecting changes due to
timing and wearout faults. If the processor begins exhibiting



mismatching fingerprints at progressively less stressed condi-
tions (e.g., lower clock frequencies, higher voltages, andlower
temperatures), this is an indication of the onset of wearout. The
principal hardware for creating microarchitectural fingerprints
is already available. Scanout chains provide a uniform test
hardware across the design (as opposed to customized test
hardware for each structure), and can be disabled when not in
use (the scanout clock is independently controlled).

B. Inducing marginal operation

Several architectural and microarchitectural knobs are al-
ready available for artificially producing a near-marginalop-
erating environment in the processor core, including dynamic
clock frequency and width controls, voltage regulators with
dynamic voltage scaling, and thermal monitoring and con-
trol [16].

Modern processors include clock scaling capabilities (to
reduce power consumption during periods when the processor
is idle). This capability can be employed to decrease the core’s
clock cycle time, and consequently reduce the guardband.
Some processors also allow regional adjustment of clock skew
and temporary phase shrinking and stretching [17].

Processors can also request changes in the voltage regulator
output (also to save power). Lower voltages cause slower
switching speeds that also serve to reduce the guardband for
a particular clock frequency. Wearout faults have been em-
pirically shown to increase frequency sensitivity to operating
voltages [10].

On the monitoring side, processors contain thermal diodes to
measure temperatures across the die. Coupled with functional
test programs that run power-consuming instruction sequences,
the diodes can establish a selected core temperature. Given
the well-known relationship between switching speeds and
temperature in CMOS, this environmental factor serves to
temporarily reduce the guardband and expose wearout faults.

IV. W EAROUT FAULT MODELING

A key challenge in evaluating microarchitecture-level
wearout fault detection methodologies such as FIRST is accu-
rately modeling the effects of wearout faults. In this section,
we outline our wearout fault injection study and our simulation
framework.

A. Fault Injection Study

Our overall goal is to understand the fault coverage char-
acteristics of a range of in-field wearout fault mechanisms.
Detection mechanisms range from simply checking the output
of functional test programs to detailed observation of internal
microarchitectural state. Our preliminary study focuses on the
fault detection capabilities of microarchitectural fingerprints,
which should provide high observability of emerging wearout
faults.

Integral to the study of wearout faults is a model of
wearout’s effect on logic. In this paper, we present a pre-
liminary simulation model of path delay faults. The model
currently allows investigation of delay faults in a baseline
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Fig. 2. The tool flow for modeling wearout faults.

circuit with pre-determined path delays. While this represents
a static view of a circuit’s path delays, we can control the
clock period to model the effect of slowdown, or equivalently,
the application of FIRST to a processor with a fixed degree of
wearout. Our initial experiments with this infrastructureshow
the coverage of wearout fault detection using microarchitec-
tural fingerprints. In future work, we will extend our frame-
work to inject simulated wearout faults along paths within
a processor. This model will allow evaluation of emerging
wearout fault coverage.

B. Fault Simulation Background

Because wearout faults appear electrically as increased
switching times, simulation models for wearout faults appear
similar to path delay models used in manufacturing test to
exercise critical paths [18]. In such tests, the circuit’s critical
paths are identified and logic input transitions are monitored
for triggering conditions. On a matching transition duringgate-
level simulation, the affected logic output is forced to a stuck-
at value to model the fault.

To maintain reasonable simulation speed, faults should be
simulated in RTL (register-transfer level) instead of gate-level
models. However, RTL generally models combinational and
sequential logic without accounting for delay. Given wearout’s
similarities to path delay faults, delay fault simulation should
provide an accurate model of wearout faults for coverage
evaluation. We implement a technique similar to that used in
SpeedGrade [19] to achieve the same accuracy as gate-level
simulations for timing faults, but with simulation of RTL and
timing fault trigger conditions.

C. Fault Simulator

We model wearout faults using the flow shown in Figure 2.
The input is an RTL description of the circuit to be analyzed
and a selected clock frequency (which determines the slack in
the guardband), and the output consists of activation statistics
for potential wearout fault sites and coverage of the detection
mechanism.

From an RTL description, we first use ASIC synthesis and
a standard cell library to generate a list of path delays in the



circuit. A path is a sequence starting at a primary input (an
output of a flip-flop), through a sequence of cells, to a primary
output (the input of a flip-flop). The path delay list contains
timing estimates for both rising and falling input transitions,
based upon the standard cell library’s characterization for each
pair of primary inputs and outputs. This information is used
to determine when a particular path is a candidate for missing
timing in a baseline model of the circuit without wearout. For
each circuit, the path delay list is static and only needs to be
computed once.

Next, we simulate the circuit using an RTL simulator
augmented with a custom wearout fault simulator and scanout
chain model. The RTL simulator is a commercial Verilog
simulator, while the fault simulator and scanout chains areC-
language based libraries that communicate with the simulator
through the Verilog programming language interface (PLI).
The fault simulator works as follows. The path delay list is
read for the circuit. The selected guardband, specified as a
clock period in this model, is used to eliminate paths from
consideration in later simulation. If it can be determined that
the selected clock period is always long enough to meet timing
for all possible input transitions on the path, the path can be
eliminated from consideration (i.e., the transition delays with
added wearout delays are less than the clock period).

On each simulated clock cycle, the fault simulator identifies
transitions on primary inputs thatpotentiallycause the primary
output to miss timing. If timing is missed, the combinational
logic driving the primary output should behave as if the
primary input had never transitioned (i.e., stuck at the previous
cycle’s value). In this situation, the primary output determined
by the RTL simulator may be incorrect with respect to the
fault model. However, because the primary input may not be
a controlling value, the primary output may still be unaffected
by the delay fault.

To determine the correct values for primary outputs, the
fault simulator temporarily undoes the input transition (by
forcing the previous cycle’s value on that node) and steps the
Verilog model to update the corresponding primary outputs.
The updated primary outputs are then compared with the
original fault-free output to determine whether the fault was
masked by other controlling values or, indeed, propagated
to the primary output. The fault simulator then restores the
original primary inputs. If the updated primary output does
differ from the initial fault-free output, the fault simulator
forces the primary output to its faulty value for the next
cycle. The Verilog simulator then advances time and latches
the primary outputs on the clock edge.

Finally, the fault simulator tracks statistics for each path
delay, including whether any triggering conditions occurred
for the path’s primary input and whether those conditions were
also propagated to the primary output.

V. EVALUATION

In this section, we briefly characterize the wearout fault
model and evaluate FIRST’s detection capabilities using mi-
croarchitectural fingerprints. The objective of these prelim-
inary experiments is to demonstrate that microarchitectural
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Fig. 3. Simplified front-end fetch, thread select, and decode stages of the
OpenSPARC T1 pipeline with microarchitectural fingerprints added on data
and control paths (shown in gray and with dashed lines).

fingerprints provide high observability of small numbers of
faults, as would be the case in the early stages of wearout.

We apply the wearout fault modeling tool flow from Sec-
tion IV to the thread select unit of the Sun OpenSPARC T1
design [20]. The OpenSPARC T1 is a multi-threaded, multi-
core chip design, made available in synthesizable Verilog RTL.
The thread select logic controls the readiness state among
four threads and selects one thread to execute on each cycle,
based upon readiness, priority, and pipeline structural hazards.
Figure 3 shows a simplified front-end of the OpenSPARC
T1 pipeline. Scanout chains, in gray, are added to monitor
important control and datapath signals in the design. The
scanout chain terminates in an LFSR which contains the
microarchitectural fingerprint of the execution.

We calculate the path delays using the Synopsys Design
Compiler mapping to an Artisan/TSMC 0.18um low-power
standard cell library. The longest transition delay in the unit
is estimated to be 951ps over 6,929 paths between 186 flip-
flop bits. We simulate the thread switch logic using Synopsys
VCS. We model the scanout chains using Verilog PLI, which
avoids changes to the original RTL and we accumulate the
output in a 16-bit LFSR. We exercise the circuit with uniform
random input vectors at the module level for 10,000 input
vectors following a reset sequence (additional input vectors do
not significantly change the results) and a cool-down time to
shift remaining values out of the scanout chain. The modeled
operating frequency is varied between 900ps and 955ps. We
use the baseline circuit delays for all results.

The fault activation results are summarized in Table I. The

TABLE I

FAULT ACTIVATION RESULTS FOR THE THREAD SCHEDULER OVER A

RANGE OF CLOCK PERIODS.

Clock Possible Activated Propagated
Period (ps) Paths Paths Paths

900 207 28 9
905 181 25 7
910 137 20 6
915 99 16 4
920 73 12 4
925 51 6 1
930 33 3 0
935 22 2 0
940 14 2 0
945 9 1 0
950 4 1 0
955 0 0 0



total number of potentially sensitized paths is listed in the
second column. As discussed in Section IV, path delays which
are always shorter than the clock period are discarded from
consideration, therefore the number of sensitized paths in-
creases with shorter clock periods. The third column indicates
the paths which were activated. For most paths in this circuit,
no transitions are observed at the primary inputs to activate
the fault. Furthermore, because of logical masking even fewer
of the activated paths are completely sensitized and propagate
an incorrect value at the primary output (shown in the final
column). The baseline circuit has 6,929 total paths, of which
2,459 and 1,029 can be activated and propagated, respectively.
As shown in the table, a majority of these paths are shorter
than 900ps. One important result of this experiment is that
the statically determined longest paths do not necessarily
determine the minimum usable clock period, even if activating
transitions can be produced at primary inputs.

The microarchitectural fingerprints accumulated over each
test period correctly distinguished executions where all timing
has been met from those where a fault had been propagated
to a primary output. That is, as the clock period is decreased,
the fingerprint begins to mismatch the fault-free fingerprint
at 925ps when the first fault propagates to a flip-flop. These
results show that fingerprints differ even when only a single
path has propagated an error during the test. The fingerprints
clearly identify when one or a small number of paths in
the design begin to miss timing. Therefore, microarchitectural
fingerprints will provide the high fault observability needed
for the FIRST methodology.

VI. RELATED WORK IN WEAROUT DETECTION

Recent research has produced a number of proposals for
predicting, detecting and tolerating wearout faults in micro-
processors.

Srinivasan et al. [21] applies known device failure models to
the processor microarchitecture to monitor its mean-time-to-
failure based upon dynamic operation. While this technique
allows predictions of a processor’s remaining operational
lifetime, it does not detect actual wearout.

Dynamic error detection mechanisms actively look for er-
rors in the field. A number of recent papers investigate just-
in-time error detection, where errors resulting from wearout
faults are detected during normal program operation. Bower
et al. [7] utilize a DIVA [22] checker core to detect hard
errors at runtime. The microarchitecture is extended with logic
to track resources used by each instruction. Upon detection
of an error by the checker, saturating counters in the units
used by the instruction are incremented to indicate potentially
failing units. This proposal has the advantage of also detecting
and correcting soft errors with the DIVA checker. However,
by utilizing existing test circuitry (scanout chains), FIRST
requires far fewer changes to the microarchitecture.

The BulletProof pipeline integrates custom built-in self
test (BIST) hardware with the processor pipeline [6]. When
resources are idle during execution, test vectors are fed through
functional units to detect faults that may have affected immedi-
ately prior execution. This integrates with a rollback-recovery

mechanism to prevent potentially erroneous instructions from
retiring. Unlike FIRST, the BulletProof pipeline requiresex-
tensive modification of the scheduling logic in the pipelineto
run test vectors during idle resource cycles.

While proposed for aggressive voltage scaling, Razor can
also potentially detect timing faults with double-sampled
latches [5]. However, for effective wearout coverage, Razor
would require special latches at each path where wearout may
occur. The work of Blome et al. [23] proposes a circuit-level
detection unit that monitors the delay of signals over time to
detect the initial onset of soft breakdown. While this technique,
like FIRST, is early wearout detection, it also requires a
custom detection unit at each path where wearout may occur.
Therefore, this technique can only detect evidence of wearout
on a pre-selected set of paths in the circuit, which may miss
the early effects wearout on unmonitored nodes.

VII. C ONCLUSIONS

We proposed FIRST, an early detection mechanism for
wearout faults. The FIRST methodology avoids the complex
or area-inefficient detection mechanisms associated with just-
in-time fault detection. We leverage the observation that
wearout faults begin with timing degradation and worsen
over time. FIRST makes use of existing design-for-test
hardware—scanout chains with signature-mode capture—to
observe wearout in slightly stressed operation. We presented
a wearout fault simulation methodology and briefly evaluated
the model on a portion of a commercial processor design.
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